THE STEREOCHEMISTRY OF a- AND B-SANTALOL

Gottfried Brieger

Department of Chemistry

University of California, Berkeley

(Received 30 September 1963; in revised form 21 October 1963).

The major constituents of East Indian sandalwood, a- and β -santalol, have been known for some time. Extensive degradative studies¹ have established a gross structural relationship between a-santalol and a-santalene (III) as well as between β -santalol and β -santalene (IV, IVa) exclusive of stereochemistry. The interconversion of aand β -santalol has also been reported.²

The stereochemistry of these alcohols has not been investigated, and we wish to present evidence herein which provides both a capstone for the structural investigations previously reported, as well as an assignment of stereochemistry to both alcohols.

The alcohols were obtained from East Indian sandalwood oil by an established procedure,³ and carefully distilled through a spinning-band column. Although

Pror a summary of this subject, J. Simonsen, "The Terpenes," Vol. III, p. 179 ff., University Press, Cambridge (1952), should be consulted.

²Bhattacharyya, <u>Science and Culture</u> <u>13</u>, 206 (1947).

³E. Gruenther "<u>The Essential Oils</u>," Vol. II, p. 266, D. Van Nostrand Co., New York (1949).

There are two major points of stereochemical interest, the configuration about the side-chain double bond, and the disposition of the side chain relative to the ring <u>viz</u>. exo or endo.

The configuration about the side-chain double bond was determined by an n.m.r. comparison of α - and β -santalol with the corresponding hydrocarbons. The successful application of this technique to the solution of stereochemical

problems with the farnesols and related natural products has recently been reported.⁴

In systems of the type $ACH_2CCH_3 = CHCH_2B$ a <u>cis</u> relationship between the absorbing methyl group and the vinyl proton consistently gives the methyl protons the lower τ value ($\Delta \tau$.07) as compared with the <u>trans</u> isomer. The santalol side chains are obviously of this general type with A = OH, $B = CH_2$. The observed values are recorded in Table I.

TABLE I^A

N.m.r. Absorption of Methyl Groups of Type (ACH₂CH₃C = CHCH₂B)

		cis	trans
a-Santalene	$A = H$ $B = CH_2$	8.37	8.45
a-Santalol	A = OH $B = CH_2$		8.44
β-Santalene	A = H $B = CH_2$	8.43	8.50
β-Santalol	A = OH $B = CH_2$		8.49

a. Spectra taken in CS₂ with tetramethylsilane internal reference.²

The consistency of these data with those previously recorded ⁴ makes it reasonably certain that the <u>trans</u> isomer predominates in both α - and β -santalol.

⁴(a) R. B. Bates, D. M. Gale, and B. J. Gruner, <u>J. Org.</u> <u>Chem. 28</u>, 1086 (1963). (b) R. B. Bates, D. M. Gale, <u>J. Am. Chem. Soc.</u> <u>82</u>, 5749 (1960).

The stereochemistry of the groups at the 3-position was investigated by reducing both α - and β -santalol in the corresponding hydrocarbons by use of sodium and methanol in liquid ammonia. It has been shown recently⁵ that this method may be applied to the reduction of geraniol and nerol with little or no isomerization of the double bonds. This method, when applied to α - and β -santalol, gave only poor yields of olefin together with much unchanged alcohol. Nevertheless, the olefins obtained were conclusively identified as α -santalene from α -santalol, and β -santalene from β -santalol.

The hydrocarbons were identified <u>via</u> infra-red absorption, n.m.r. and vapor phase chromatographic retention time. These properties were identical with those of the natural materials.⁶

The hydrocarbons from β -santalene consisted of a mixture of 67% β -santalene (IV) and 33% epi- β -santalene (IVa). Both β -santalene and epi- β -santalene are available by synthesis.⁷ We must therefore conclude that β -santalol is a mixture of epimeric alcohols II and IIa with β -santalol (II) predominating. α -Santalol is assigned the stereochemistry shown in (I).

⁵Kenneth W. Greenlee and Vincent G. Wiley, <u>J. Org. Chem.</u> <u>27</u>, 2304 (1962).

⁶Kindly supplied by Professor Sukh Dhev.

 ⁷⁽a) E. J. Corey, R. Hartman, and P. A. Vatakenchery,
J. Am. Chem. Soc. 84, 2611 (1962). (b) Gottfried
Brieger, to be published shortly.